tensorcircuit.circuit#

Quantum circuit: the state simulator

class tensorcircuit.circuit.Circuit(nqubits: int, inputs: Optional[Any] = None, mps_inputs: Optional[tensorcircuit.quantum.QuOperator] = None, split: Optional[Dict[str, Any]] = None)[source]#

Bases: tensorcircuit.basecircuit.BaseCircuit

Circuit class. Simple usage demo below.

c = tc.Circuit(3)
c.H(1)
c.CNOT(0, 1)
c.RX(2, theta=tc.num_to_tensor(1.))
c.expectation([tc.gates.z(), (2, )]) # 0.54
ANY(*index: int, **vars: Any) β†’ None#

Apply ANY gate with parameters on the circuit. See tensorcircuit.gates.any_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

CNOT(*index: int, **kws: Any) β†’ None#

Apply CNOT gate on the circuit. See tensorcircuit.gates.cnot_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j \end{bmatrix}\end{split}\]

CPHASE(*index: int, **vars: Any) β†’ None#

Apply CPHASE gate with parameters on the circuit. See tensorcircuit.gates.cphase_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

CR(*index: int, **vars: Any) β†’ None#

Apply CR gate with parameters on the circuit. See tensorcircuit.gates.cr_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

CRX(*index: int, **vars: Any) β†’ None#

Apply CRX gate with parameters on the circuit. See tensorcircuit.gates.crx_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

CRY(*index: int, **vars: Any) β†’ None#

Apply CRY gate with parameters on the circuit. See tensorcircuit.gates.cry_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

CRZ(*index: int, **vars: Any) β†’ None#

Apply CRZ gate with parameters on the circuit. See tensorcircuit.gates.crz_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

CU(*index: int, **vars: Any) β†’ None#

Apply CU gate with parameters on the circuit. See tensorcircuit.gates.cu_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

CY(*index: int, **kws: Any) β†’ None#

Apply CY gate on the circuit. See tensorcircuit.gates.cy_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.-1.j\\ 0.+0.j & 0.+0.j & 0.+1.j & 0.+0.j \end{bmatrix}\end{split}\]

CZ(*index: int, **kws: Any) β†’ None#

Apply CZ gate on the circuit. See tensorcircuit.gates.cz_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & -1.+0.j \end{bmatrix}\end{split}\]

EXP(*index: int, **vars: Any) β†’ None#

Apply EXP gate with parameters on the circuit. See tensorcircuit.gates.exp_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

EXP1(*index: int, **vars: Any) β†’ None#

Apply EXP1 gate with parameters on the circuit. See tensorcircuit.gates.exp1_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

FREDKIN(*index: int, **kws: Any) β†’ None#

Apply FREDKIN gate on the circuit. See tensorcircuit.gates.fredkin_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j \end{bmatrix}\end{split}\]

H(*index: int, **kws: Any) β†’ None#

Apply H gate on the circuit. See tensorcircuit.gates.h_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 0.70710677+0.j & 0.70710677+0.j\\ 0.70710677+0.j & -0.70710677+0.j \end{bmatrix}\end{split}\]

I(*index: int, **kws: Any) β†’ None#

Apply I gate on the circuit. See tensorcircuit.gates.i_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j \end{bmatrix}\end{split}\]

ISWAP(*index: int, **vars: Any) β†’ None#

Apply ISWAP gate with parameters on the circuit. See tensorcircuit.gates.iswap_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

MPO(*index: int, **vars: Any) β†’ None#

Apply mpo gate in MPO format on the circuit. See tensorcircuit.gates.mpo_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

MULTICONTROL(*index: int, **vars: Any) β†’ None#

Apply multicontrol gate in MPO format on the circuit. See tensorcircuit.gates.multicontrol_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

ORX(*index: int, **vars: Any) β†’ None#

Apply ORX gate with parameters on the circuit. See tensorcircuit.gates.orx_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

ORY(*index: int, **vars: Any) β†’ None#

Apply ORY gate with parameters on the circuit. See tensorcircuit.gates.ory_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

ORZ(*index: int, **vars: Any) β†’ None#

Apply ORZ gate with parameters on the circuit. See tensorcircuit.gates.orz_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

OX(*index: int, **kws: Any) β†’ None#

Apply OX gate on the circuit. See tensorcircuit.gates.ox_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j \end{bmatrix}\end{split}\]

OY(*index: int, **kws: Any) β†’ None#

Apply OY gate on the circuit. See tensorcircuit.gates.oy_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 0.+0.j & 0.-1.j & 0.+0.j & 0.+0.j\\ 0.+1.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j \end{bmatrix}\end{split}\]

OZ(*index: int, **kws: Any) β†’ None#

Apply OZ gate on the circuit. See tensorcircuit.gates.oz_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & -1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j \end{bmatrix}\end{split}\]

PHASE(*index: int, **vars: Any) β†’ None#

Apply PHASE gate with parameters on the circuit. See tensorcircuit.gates.phase_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

R(*index: int, **vars: Any) β†’ None#

Apply R gate with parameters on the circuit. See tensorcircuit.gates.r_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

RX(*index: int, **vars: Any) β†’ None#

Apply RX gate with parameters on the circuit. See tensorcircuit.gates.rx_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

RXX(*index: int, **vars: Any) β†’ None#

Apply RXX gate with parameters on the circuit. See tensorcircuit.gates.rxx_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

RY(*index: int, **vars: Any) β†’ None#

Apply RY gate with parameters on the circuit. See tensorcircuit.gates.ry_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

RYY(*index: int, **vars: Any) β†’ None#

Apply RYY gate with parameters on the circuit. See tensorcircuit.gates.ryy_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

RZ(*index: int, **vars: Any) β†’ None#

Apply RZ gate with parameters on the circuit. See tensorcircuit.gates.rz_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

RZZ(*index: int, **vars: Any) β†’ None#

Apply RZZ gate with parameters on the circuit. See tensorcircuit.gates.rzz_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

S(*index: int, **kws: Any) β†’ None#

Apply S gate on the circuit. See tensorcircuit.gates.s_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j\\ 0.+0.j & 0.+1.j \end{bmatrix}\end{split}\]

SD(*index: int, **kws: Any) β†’ None#

Apply SD gate on the circuit. See tensorcircuit.gates.sd_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j\\ 0.+0.j & 0.-1.j \end{bmatrix}\end{split}\]

SWAP(*index: int, **kws: Any) β†’ None#

Apply SWAP gate on the circuit. See tensorcircuit.gates.swap_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j \end{bmatrix}\end{split}\]

T(*index: int, **kws: Any) β†’ None#

Apply T gate on the circuit. See tensorcircuit.gates.t_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1. & +0.j & 0. & +0.j\\ 0. & +0.j & 0.70710677+0.70710677j \end{bmatrix}\end{split}\]

TD(*index: int, **kws: Any) β†’ None#

Apply TD gate on the circuit. See tensorcircuit.gates.td_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1. & +0.j & 0. & +0.j\\ 0. & +0.j & 0.70710677-0.70710677j \end{bmatrix}\end{split}\]

TOFFOLI(*index: int, **kws: Any) β†’ None#

Apply TOFFOLI gate on the circuit. See tensorcircuit.gates.toffoli_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j \end{bmatrix}\end{split}\]

U(*index: int, **vars: Any) β†’ None#

Apply U gate with parameters on the circuit. See tensorcircuit.gates.u_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

WROOT(*index: int, **kws: Any) β†’ None#

Apply WROOT gate on the circuit. See tensorcircuit.gates.wroot_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 0.70710677+0.j & -0.5 & -0.5j\\ 0.5 & -0.5j & 0.70710677+0.j \end{bmatrix}\end{split}\]

X(*index: int, **kws: Any) β†’ None#

Apply X gate on the circuit. See tensorcircuit.gates.x_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 0.+0.j & 1.+0.j\\ 1.+0.j & 0.+0.j \end{bmatrix}\end{split}\]

Y(*index: int, **kws: Any) β†’ None#

Apply Y gate on the circuit. See tensorcircuit.gates.y_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 0.+0.j & 0.-1.j\\ 0.+1.j & 0.+0.j \end{bmatrix}\end{split}\]

Z(*index: int, **kws: Any) β†’ None#

Apply Z gate on the circuit. See tensorcircuit.gates.z_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j\\ 0.+0.j & -1.+0.j \end{bmatrix}\end{split}\]

__init__(nqubits: int, inputs: Optional[Any] = None, mps_inputs: Optional[tensorcircuit.quantum.QuOperator] = None, split: Optional[Dict[str, Any]] = None) β†’ None[source]#

Circuit object based on state simulator.

Parameters
  • nqubits (int) – The number of qubits in the circuit.

  • inputs (Optional[Tensor], optional) – If not None, the initial state of the circuit is taken as inputs instead of \(\vert 0\rangle^n\) qubits, defaults to None.

  • mps_inputs (Optional[QuOperator]) – QuVector for a MPS like initial wavefunction.

  • split (Optional[Dict[str, Any]]) – dict if two qubit gate is ready for split, including parameters for at least one of max_singular_values and max_truncation_err.

static all_zero_nodes(n: int, d: int = 2, prefix: str = 'qb-') β†’ List[tensornetwork.network_components.Node]#
amplitude(l: Union[str, Any]) β†’ Any#

Returns the amplitude of the circuit given the bitstring l. For state simulator, it computes \(\langle l\vert \psi\rangle\), for density matrix simulator, it computes \(Tr(\rho \vert l\rangle \langle 1\vert)\) Note how these two are different up to a square operation.

Example

>>> c = tc.Circuit(2)
>>> c.X(0)
>>> c.amplitude("10")
array(1.+0.j, dtype=complex64)
>>> c.CNOT(0, 1)
>>> c.amplitude("11")
array(1.+0.j, dtype=complex64)
Parameters

l (Union[str, Tensor]) – The bitstring of 0 and 1s.

Returns

The amplitude of the circuit.

Return type

tn.Node.tensor

amplitudedamping(*index: int, status: Optional[float] = None, name: Optional[str] = None, **vars: float) β†’ None#

Apply amplitudedamping quantum channel on the circuit. See tensorcircuit.channels.amplitudedampingchannel()

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • status (Tensor) – uniform external random number between 0 and 1

  • vars (float.) – Parameters for the channel.

any(*index: int, **vars: Any) β†’ None#

Apply ANY gate with parameters on the circuit. See tensorcircuit.gates.any_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

append(c: tensorcircuit.abstractcircuit.AbstractCircuit, indices: Optional[List[int]] = None) β†’ tensorcircuit.abstractcircuit.AbstractCircuit#

append circuit c before

Example

>>> c1 = tc.Circuit(2)
>>> c1.H(0)
>>> c1.H(1)
>>> c2 = tc.Circuit(2)
>>> c2.cnot(0, 1)
>>> c1.append(c2)
<tensorcircuit.circuit.Circuit object at 0x7f8402968970>
>>> c1.draw()
    β”Œβ”€β”€β”€β”
q_0:─ H β”œβ”€β”€β– β”€β”€
    β”œβ”€β”€β”€β”€β”Œβ”€β”΄β”€β”
q_1:─ H β”œβ”€ X β”œ
    β””β”€β”€β”€β”˜β””β”€β”€β”€β”˜
Parameters
  • c (BaseCircuit) – The other circuit to be appended

  • indices (Optional[List[int]], optional) – the qubit indices to which c is appended on. Defaults to None, which means plain concatenation.

Returns

The composed circuit

Return type

BaseCircuit

append_from_qir(qir: List[Dict[str, Any]]) β†’ None#

Apply the ciurict in form of quantum intermediate representation after the current cirucit.

Example

>>> c = tc.Circuit(3)
>>> c.H(0)
>>> c.to_qir()
[{'gatef': h, 'gate': Gate(...), 'index': (0,), 'name': 'h', 'split': None, 'mpo': False}]
>>> c2 = tc.Circuit(3)
>>> c2.CNOT(0, 1)
>>> c2.to_qir()
[{'gatef': cnot, 'gate': Gate(...), 'index': (0, 1), 'name': 'cnot', 'split': None, 'mpo': False}]
>>> c.append_from_qir(c2.to_qir())
>>> c.to_qir()
[{'gatef': h, 'gate': Gate(...), 'index': (0,), 'name': 'h', 'split': None, 'mpo': False},
 {'gatef': cnot, 'gate': Gate(...), 'index': (0, 1), 'name': 'cnot', 'split': None, 'mpo': False}]
Parameters

qir (List[Dict[str, Any]]) – The quantum intermediate representation.

apply(gate: Union[tensorcircuit.gates.Gate, tensorcircuit.quantum.QuOperator], *index: int, name: Optional[str] = None, split: Optional[Dict[str, Any]] = None, mpo: bool = False, ir_dict: Optional[Dict[str, Any]] = None) β†’ None#

An implementation of this method should also append gate directionary to self._qir

apply_general_gate(gate: Union[tensorcircuit.gates.Gate, tensorcircuit.quantum.QuOperator], *index: int, name: Optional[str] = None, split: Optional[Dict[str, Any]] = None, mpo: bool = False, ir_dict: Optional[Dict[str, Any]] = None) β†’ None#

An implementation of this method should also append gate directionary to self._qir

static apply_general_gate_delayed(gatef: Callable[[], tensorcircuit.gates.Gate], name: Optional[str] = None, mpo: bool = False) β†’ Callable[[...], None]#
apply_general_kraus(kraus: Sequence[tensorcircuit.gates.Gate], *index: int, status: Optional[float] = None, with_prob: bool = False, name: Optional[str] = None) β†’ Any#

Monte Carlo trajectory simulation of general Kraus channel whose Kraus operators cannot be amplified to unitary operators. For unitary operators composed Kraus channel, unitary_kraus() is much faster.

This function is jittable in theory. But only jax+GPU combination is recommended for jit since the graph building time is too long for other backend options; though the running time of the function is very fast for every case.

Parameters
  • kraus (Sequence[Gate]) – A list of tn.Node for Kraus operators.

  • index (int) – The qubits index that Kraus channel is applied on.

  • status (Optional[float], optional) – Random tensor uniformly between 0 or 1, defaults to be None, when the random number will be generated automatically

static apply_general_kraus_delayed(krausf: Callable[[...], Sequence[tensorcircuit.gates.Gate]], is_unitary: bool = False) β†’ Callable[[...], None][source]#
static apply_general_variable_gate_delayed(gatef: Callable[[...], tensorcircuit.gates.Gate], name: Optional[str] = None, mpo: bool = False) β†’ Callable[[...], None]#
barrier_instruction(*index: List[int]) β†’ None#

add a barrier instruction flag, no effect on numerical simulation

Parameters

index (List[int]) – the corresponding qubits

ccnot(*index: int, **kws: Any) β†’ None#

Apply TOFFOLI gate on the circuit. See tensorcircuit.gates.toffoli_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j \end{bmatrix}\end{split}\]

ccx(*index: int, **kws: Any) β†’ None#

Apply TOFFOLI gate on the circuit. See tensorcircuit.gates.toffoli_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j \end{bmatrix}\end{split}\]

circuit_param: Dict[str, Any]#
cnot(*index: int, **kws: Any) β†’ None#

Apply CNOT gate on the circuit. See tensorcircuit.gates.cnot_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j \end{bmatrix}\end{split}\]

static coloring_copied_nodes(nodes: Sequence[tensornetwork.network_components.Node], nodes0: Sequence[tensornetwork.network_components.Node], is_dagger: bool = True, flag: str = 'inputs') β†’ None#
static coloring_nodes(nodes: Sequence[tensornetwork.network_components.Node], is_dagger: bool = False, flag: str = 'inputs') β†’ None#
cond_measure(index: int, status: Optional[float] = None) β†’ Any#

Measurement on z basis at index qubit based on quantum amplitude (not post-selection). The highlight is that this method can return the measured result as a int Tensor and thus maintained a jittable pipeline.

Example

>>> c = tc.Circuit(2)
>>> c.H(0)
>>> r = c.cond_measurement(0)
>>> c.conditional_gate(r, [tc.gates.i(), tc.gates.x()], 1)
>>> c.expectation([tc.gates.z(), [0]]), c.expectation([tc.gates.z(), [1]])
# two possible outputs: (1, 1) or (-1, -1)

Note

In terms of DMCircuit, this method returns nothing and the density matrix after this method is kept in mixed state without knowing the measuremet resuslts

Parameters

index (int) – the qubit for the z-basis measurement

Returns

0 or 1 for z measurement on up and down freedom

Return type

Tensor

cond_measurement(index: int, status: Optional[float] = None) β†’ Any#

Measurement on z basis at index qubit based on quantum amplitude (not post-selection). The highlight is that this method can return the measured result as a int Tensor and thus maintained a jittable pipeline.

Example

>>> c = tc.Circuit(2)
>>> c.H(0)
>>> r = c.cond_measurement(0)
>>> c.conditional_gate(r, [tc.gates.i(), tc.gates.x()], 1)
>>> c.expectation([tc.gates.z(), [0]]), c.expectation([tc.gates.z(), [1]])
# two possible outputs: (1, 1) or (-1, -1)

Note

In terms of DMCircuit, this method returns nothing and the density matrix after this method is kept in mixed state without knowing the measuremet resuslts

Parameters

index (int) – the qubit for the z-basis measurement

Returns

0 or 1 for z measurement on up and down freedom

Return type

Tensor

conditional_gate(which: Any, kraus: Sequence[tensorcircuit.gates.Gate], *index: int) β†’ None#

Apply which-th gate from kraus list, i.e. apply kraus[which]

Parameters
  • which (Tensor) – Tensor of shape [] and dtype int

  • kraus (Sequence[Gate]) – A list of gate in the form of tc.gate or Tensor

  • index (int) – the qubit lines the gate applied on

copy() β†’ tensorcircuit.abstractcircuit.AbstractCircuit#
static copy_nodes(nodes: Sequence[tensornetwork.network_components.Node], dangling: Optional[Sequence[tensornetwork.network_components.Edge]] = None, conj: Optional[bool] = False) β†’ Tuple[List[tensornetwork.network_components.Node], List[tensornetwork.network_components.Edge]]#

copy all nodes and dangling edges correspondingly

Returns

cphase(*index: int, **vars: Any) β†’ None#

Apply CPHASE gate with parameters on the circuit. See tensorcircuit.gates.cphase_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

cr(*index: int, **vars: Any) β†’ None#

Apply CR gate with parameters on the circuit. See tensorcircuit.gates.cr_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

crx(*index: int, **vars: Any) β†’ None#

Apply CRX gate with parameters on the circuit. See tensorcircuit.gates.crx_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

cry(*index: int, **vars: Any) β†’ None#

Apply CRY gate with parameters on the circuit. See tensorcircuit.gates.cry_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

crz(*index: int, **vars: Any) β†’ None#

Apply CRZ gate with parameters on the circuit. See tensorcircuit.gates.crz_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

cswap(*index: int, **kws: Any) β†’ None#

Apply FREDKIN gate on the circuit. See tensorcircuit.gates.fredkin_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j \end{bmatrix}\end{split}\]

cu(*index: int, **vars: Any) β†’ None#

Apply CU gate with parameters on the circuit. See tensorcircuit.gates.cu_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

cx(*index: int, **kws: Any) β†’ None#

Apply CNOT gate on the circuit. See tensorcircuit.gates.cnot_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j \end{bmatrix}\end{split}\]

cy(*index: int, **kws: Any) β†’ None#

Apply CY gate on the circuit. See tensorcircuit.gates.cy_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.-1.j\\ 0.+0.j & 0.+0.j & 0.+1.j & 0.+0.j \end{bmatrix}\end{split}\]

cz(*index: int, **kws: Any) β†’ None#

Apply CZ gate on the circuit. See tensorcircuit.gates.cz_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & -1.+0.j \end{bmatrix}\end{split}\]

depolarizing(*index: int, status: Optional[float] = None, name: Optional[str] = None, **vars: float) β†’ None#

Apply depolarizing quantum channel on the circuit. See tensorcircuit.channels.depolarizingchannel()

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • status (Tensor) – uniform external random number between 0 and 1

  • vars (float.) – Parameters for the channel.

depolarizing2(index: int, *, px: float, py: float, pz: float, status: Optional[float] = None) β†’ float[source]#
depolarizing_reference(index: int, *, px: float, py: float, pz: float, status: Optional[float] = None) β†’ Any[source]#

Apply depolarizing channel in a Monte Carlo way, i.e. for each call of this method, one of gates from X, Y, Z, I are applied on the circuit based on the probability indicated by px, py, pz.

Parameters
  • index (int) – The qubit that depolarizing channel is on

  • px (float) – probability for X noise

  • py (float) – probability for Y noise

  • pz (float) – probability for Z noise

  • status (Optional[float], optional) – random seed uniformly from 0 to 1, defaults to None (generated implicitly)

Returns

int Tensor, the element lookup: [0: x, 1: y, 2: z, 3: I]

Return type

Tensor

draw(**kws: Any) β†’ Any#

Visualise the circuit. This method recevies the keywords as same as qiskit.circuit.QuantumCircuit.draw. More details can be found here: https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.draw.html. Interesting kws options include: ``idle_wires``(bool)

Example

>>> c = tc.Circuit(3)
>>> c.H(1)
>>> c.X(2)
>>> c.CNOT(0, 1)
>>> c.draw(output='text')
q_0: ───────■──
     β”Œβ”€β”€β”€β”β”Œβ”€β”΄β”€β”
q_1: ─ H β”œβ”€ X β”œ
     β”œβ”€β”€β”€β”€β””β”€β”€β”€β”˜
q_2: ─ X β”œβ”€β”€β”€β”€β”€
     β””β”€β”€β”€β”˜
exp(*index: int, **vars: Any) β†’ None#

Apply EXP gate with parameters on the circuit. See tensorcircuit.gates.exp_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

exp1(*index: int, **vars: Any) β†’ None#

Apply EXP1 gate with parameters on the circuit. See tensorcircuit.gates.exp1_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

expectation(*ops: Tuple[tensornetwork.network_components.Node, List[int]], reuse: bool = True, enable_lightcone: bool = False, noise_conf: Optional[Any] = None, nmc: int = 1000, status: Optional[Any] = None, **kws: Any) β†’ Any[source]#

Compute the expectation of corresponding operators.

Example

>>> c = tc.Circuit(2)
>>> c.H(0)
>>> c.expectation((tc.gates.z(), [0]))
array(0.+0.j, dtype=complex64)
>>> c = tc.Circuit(2)
>>> c.cnot(0, 1)
>>> c.rx(0, theta=0.4)
>>> c.rx(1, theta=0.8)
>>> c.h(0)
>>> c.h(1)
>>> error1 = tc.channels.generaldepolarizingchannel(0.1, 1)
>>> error2 = tc.channels.generaldepolarizingchannel(0.06, 2)
>>> noise_conf = NoiseConf()
>>> noise_conf.add_noise("rx", error1)
>>> noise_conf.add_noise("cnot", [error2], [[0, 1]])
>>> c.expectation((tc.gates.x(), [0]), noise_conf=noise_conf, nmc=10000)
(0.46274087-3.764033e-09j)
Parameters
  • ops (Tuple[tn.Node, List[int]]) – Operator and its position on the circuit, eg. (tc.gates.z(), [1, ]), (tc.gates.x(), [2, ]) is for operator \(Z_1X_2\).

  • reuse (bool, optional) – If True, then the wavefunction tensor is cached for further expectation evaluation, defaults to be true.

  • enable_lightcone (bool, optional) – whether enable light cone simplification, defaults to False

  • noise_conf (Optional[NoiseConf], optional) – Noise Configuration, defaults to None

  • nmc (int, optional) – repetition time for Monte Carlo sampling for noisfy calculation, defaults to 1000

  • status (Optional[Tensor], optional) – external randomness given by tensor uniformly from [0, 1], defaults to None, used for noisfy circuit sampling

Raises

ValueError – β€œCannot measure two operators in one index”

Returns

Tensor with one element

Return type

Tensor

expectation_before(*ops: Tuple[tensornetwork.network_components.Node, List[int]], reuse: bool = True, **kws: Any) β†’ List[tensornetwork.network_components.Node]#

Get the tensor network in the form of a list of nodes for the expectation calculation before the real contraction

Parameters

reuse (bool, optional) – _description_, defaults to True

Raises

ValueError – _description_

Returns

_description_

Return type

List[tn.Node]

expectation_ps(x: Optional[Sequence[int]] = None, y: Optional[Sequence[int]] = None, z: Optional[Sequence[int]] = None, ps: Optional[Sequence[int]] = None, reuse: bool = True, noise_conf: Optional[Any] = None, nmc: int = 1000, status: Optional[Any] = None, **kws: Any) β†’ Any#

Shortcut for Pauli string expectation. x, y, z list are for X, Y, Z positions

Example

>>> c = tc.Circuit(2)
>>> c.X(0)
>>> c.H(1)
>>> c.expectation_ps(x=[1], z=[0])
array(-0.99999994+0.j, dtype=complex64)
>>> c = tc.Circuit(2)
>>> c.cnot(0, 1)
>>> c.rx(0, theta=0.4)
>>> c.rx(1, theta=0.8)
>>> c.h(0)
>>> c.h(1)
>>> error1 = tc.channels.generaldepolarizingchannel(0.1, 1)
>>> error2 = tc.channels.generaldepolarizingchannel(0.06, 2)
>>> noise_conf = NoiseConf()
>>> noise_conf.add_noise("rx", error1)
>>> noise_conf.add_noise("cnot", [error2], [[0, 1]])
>>> c.expectation_ps(x=[0], noise_conf=noise_conf, nmc=10000)
(0.46274087-3.764033e-09j)
Parameters
  • x (Optional[Sequence[int]], optional) – sites to apply X gate, defaults to None

  • y (Optional[Sequence[int]], optional) – sites to apply Y gate, defaults to None

  • z (Optional[Sequence[int]], optional) – sites to apply Z gate, defaults to None

  • ps (Optional[Sequence[int]], optional) – or one can apply a ps structures instead of x, y, z, e.g. [0, 1, 3, 0, 2, 2] for X_1Z_2Y_4Y_5 defaults to None, ps can overwrite x, y and z

  • reuse (bool, optional) – whether to cache and reuse the wavefunction, defaults to True

  • noise_conf (Optional[NoiseConf], optional) – Noise Configuration, defaults to None

  • nmc (int, optional) – repetition time for Monte Carlo sampling for noisfy calculation, defaults to 1000

  • status (Optional[Tensor], optional) – external randomness given by tensor uniformly from [0, 1], defaults to None, used for noisfy circuit sampling

Returns

Expectation value

Return type

Tensor

fredkin(*index: int, **kws: Any) β†’ None#

Apply FREDKIN gate on the circuit. See tensorcircuit.gates.fredkin_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j \end{bmatrix}\end{split}\]

classmethod from_json(jsonstr: str, circuit_params: Optional[Dict[str, Any]] = None) β†’ tensorcircuit.abstractcircuit.AbstractCircuit#

load json str as a Circuit

Parameters
  • jsonstr (str) – _description_

  • circuit_params (Optional[Dict[str, Any]], optional) – Extra circuit parameters in the format of __init__, defaults to None

Returns

_description_

Return type

AbstractCircuit

classmethod from_json_file(file: str, circuit_params: Optional[Dict[str, Any]] = None) β†’ tensorcircuit.abstractcircuit.AbstractCircuit#

load json file and convert it to a circuit

Parameters
  • file (str) – filename

  • circuit_params (Optional[Dict[str, Any]], optional) – _description_, defaults to None

Returns

_description_

Return type

AbstractCircuit

classmethod from_openqasm(qasmstr: str, circuit_params: Optional[Dict[str, Any]] = None, keep_measure_order: bool = False) β†’ tensorcircuit.abstractcircuit.AbstractCircuit#
classmethod from_openqasm_file(file: str, circuit_params: Optional[Dict[str, Any]] = None, keep_measure_order: bool = False) β†’ tensorcircuit.abstractcircuit.AbstractCircuit#
classmethod from_qir(qir: List[Dict[str, Any]], circuit_params: Optional[Dict[str, Any]] = None) β†’ tensorcircuit.abstractcircuit.AbstractCircuit#

Restore the circuit from the quantum intermediate representation.

Example

>>> c = tc.Circuit(3)
>>> c.H(0)
>>> c.rx(1, theta=tc.array_to_tensor(0.7))
>>> c.exp1(0, 1, unitary=tc.gates._zz_matrix, theta=tc.array_to_tensor(-0.2), split=split)
>>> len(c)
7
>>> c.expectation((tc.gates.z(), [1]))
array(0.764842+0.j, dtype=complex64)
>>> qirs = c.to_qir()
>>>
>>> c = tc.Circuit.from_qir(qirs, circuit_params={"nqubits": 3})
>>> len(c._nodes)
7
>>> c.expectation((tc.gates.z(), [1]))
array(0.764842+0.j, dtype=complex64)
Parameters
  • qir (List[Dict[str, Any]]) – The quantum intermediate representation of a circuit.

  • circuit_params (Optional[Dict[str, Any]]) – Extra circuit parameters.

Returns

The circuit have same gates in the qir.

Return type

Circuit

classmethod from_qiskit(qc: Any, n: Optional[int] = None, inputs: Optional[List[float]] = None, circuit_params: Optional[Dict[str, Any]] = None, binding_params: Optional[Union[Sequence[float], Dict[Any, float]]] = None) β†’ tensorcircuit.abstractcircuit.AbstractCircuit#

Import Qiskit QuantumCircuit object as a tc.Circuit object.

Example

>>> from qiskit import QuantumCircuit
>>> qisc = QuantumCircuit(3)
>>> qisc.h(2)
>>> qisc.cswap(1, 2, 0)
>>> qisc.swap(0, 1)
>>> c = tc.Circuit.from_qiskit(qisc)
Parameters
  • qc (QuantumCircuit in Qiskit) – Qiskit Circuit object

  • n (int) – The number of qubits for the circuit

  • inputs (Optional[List[float]], optional) – possible input wavefunction for tc.Circuit, defaults to None

  • circuit_params (Optional[Dict[str, Any]]) – kwargs given in Circuit.__init__ construction function, default to None.

  • binding_params (Optional[Union[Sequence[float], Dict[Any, float]]]) – (variational) parameters for the circuit. Could be either a sequence or dictionary depending on the type of parameters in the Qiskit circuit. For ParameterVectorElement use sequence. For Parameter use dictionary

Returns

The same circuit but as tensorcircuit object

Return type

Circuit

classmethod from_qsim_file(file: str, circuit_params: Optional[Dict[str, Any]] = None) β†’ tensorcircuit.abstractcircuit.AbstractCircuit#
static front_from_nodes(nodes: List[tensornetwork.network_components.Node]) β†’ List[tensornetwork.network_components.Edge]#
gate_aliases = [['cnot', 'cx'], ['fredkin', 'cswap'], ['toffoli', 'ccnot'], ['toffoli', 'ccx'], ['any', 'unitary'], ['sd', 'sdg'], ['td', 'tdg']]#
gate_count(gate_list: Optional[Union[str, Sequence[str]]] = None) β†’ int#

count the gate number of the circuit

Example

>>> c = tc.Circuit(3)
>>> c.h(0)
>>> c.multicontrol(0, 1, 2, ctrl=[0, 1], unitary=tc.gates._x_matrix)
>>> c.toffolli(1, 2, 0)
>>> c.gate_count()
3
>>> c.gate_count(["multicontrol", "toffoli"])
2
Parameters

gate_list (Optional[Sequence[str]], optional) – gate name or gate name list to be counted, defaults to None (counting all gates)

Returns

the total number of all gates or gates in the gate_list

Return type

int

gate_count_by_condition(cond_func: Callable[[Dict[str, Any]], bool]) β†’ int#

count the number of gates that satisfy certain condition

Example

>>> c = tc.Circuit(3)
>>> c.x(0)
>>> c.h(0)
>>> c.multicontrol(0, 1, 2, ctrl=[0, 1], unitary=tc.gates._x_matrix)
>>> c.gate_count_by_condition(lambda qir: qir["index"] == (0, ))
2
>>> c.gate_count_by_condition(lambda qir: qir["mpo"])
1
Parameters

cond_func (Callable[[Dict[str, Any]], bool]) – the condition for counting the gate

Returns

the total number of all gates which satisfy the condition

Return type

int

gate_summary() β†’ Dict[str, int]#

return the summary dictionary on gate type - gate count pair

Returns

the gate count dict by gate type

Return type

Dict[str, int]

general_kraus(kraus: Sequence[tensorcircuit.gates.Gate], *index: int, status: Optional[float] = None, with_prob: bool = False, name: Optional[str] = None) β†’ Any[source]#

Monte Carlo trajectory simulation of general Kraus channel whose Kraus operators cannot be amplified to unitary operators. For unitary operators composed Kraus channel, unitary_kraus() is much faster.

This function is jittable in theory. But only jax+GPU combination is recommended for jit since the graph building time is too long for other backend options; though the running time of the function is very fast for every case.

Parameters
  • kraus (Sequence[Gate]) – A list of tn.Node for Kraus operators.

  • index (int) – The qubits index that Kraus channel is applied on.

  • status (Optional[float], optional) – Random tensor uniformly between 0 or 1, defaults to be None, when the random number will be generated automatically

generaldepolarizing(*index: int, status: Optional[float] = None, name: Optional[str] = None, **vars: float) β†’ None#

Apply generaldepolarizing quantum channel on the circuit. See tensorcircuit.channels.generaldepolarizingchannel()

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • status (Tensor) – uniform external random number between 0 and 1

  • vars (float.) – Parameters for the channel.

get_circuit_as_quoperator() β†’ tensorcircuit.quantum.QuOperator#

Get the QuOperator MPO like representation of the circuit unitary without contraction.

Returns

QuOperator object for the circuit unitary (open indices for the input state)

Return type

QuOperator

get_positional_logical_mapping() β†’ Dict[int, int]#

Get positional logical mapping dict based on measure instruction. This function is useful when we only measure part of the qubits in the circuit, to process the count result from partial measurement, we must be aware of the mapping, i.e. for each position in the count bitstring, what is the corresponding qubits (logical) defined on the circuit

Returns

positional_logical_mapping

Return type

Dict[int, int]

get_quoperator() β†’ tensorcircuit.quantum.QuOperator[source]#

Get the QuOperator MPO like representation of the circuit unitary without contraction.

Returns

QuOperator object for the circuit unitary (open indices for the input state)

Return type

QuOperator

get_quvector() β†’ tensorcircuit.quantum.QuVector#

Get the representation of the output state in the form of QuVector while maintaining the circuit uncomputed

Returns

QuVector representation of the output state from the circuit

Return type

QuVector

get_state_as_quvector() β†’ tensorcircuit.quantum.QuVector#

Get the representation of the output state in the form of QuVector while maintaining the circuit uncomputed

Returns

QuVector representation of the output state from the circuit

Return type

QuVector

h(*index: int, **kws: Any) β†’ None#

Apply H gate on the circuit. See tensorcircuit.gates.h_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 0.70710677+0.j & 0.70710677+0.j\\ 0.70710677+0.j & -0.70710677+0.j \end{bmatrix}\end{split}\]

i(*index: int, **kws: Any) β†’ None#

Apply I gate on the circuit. See tensorcircuit.gates.i_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j \end{bmatrix}\end{split}\]

initial_mapping(logical_physical_mapping: Dict[int, int], n: Optional[int] = None, circuit_params: Optional[Dict[str, Any]] = None) β†’ tensorcircuit.abstractcircuit.AbstractCircuit#

generate a new circuit with the qubit mapping given by logical_physical_mapping

Parameters
  • logical_physical_mapping (Dict[int, int]) – how to map logical qubits to the physical qubits on the new circuit

  • n (Optional[int], optional) – number of qubit of the new circuit, can be different from the original one, defaults to None

  • circuit_params (Optional[Dict[str, Any]], optional) – _description_, defaults to None

Returns

_description_

Return type

AbstractCircuit

inputs: Any#
inverse(circuit_params: Optional[Dict[str, Any]] = None) β†’ tensorcircuit.abstractcircuit.AbstractCircuit#

inverse the circuit, return a new inversed circuit

EXAMPLE

>>> c = tc.Circuit(2)
>>> c.H(0)
>>> c.rzz(1, 2, theta=0.8)
>>> c1 = c.inverse()
Parameters

circuit_params (Optional[Dict[str, Any]], optional) – keywords dict for initialization the new circuit, defaults to None

Returns

the inversed circuit

Return type

Circuit

is_dm: bool = False#
is_mps: bool = False#
is_valid() β†’ bool[source]#

[WIP], check whether the circuit is legal.

Returns

The bool indicating whether the circuit is legal

Return type

bool

isotropicdepolarizing(*index: int, status: Optional[float] = None, name: Optional[str] = None, **vars: float) β†’ None#

Apply isotropicdepolarizing quantum channel on the circuit. See tensorcircuit.channels.isotropicdepolarizingchannel()

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • status (Tensor) – uniform external random number between 0 and 1

  • vars (float.) – Parameters for the channel.

iswap(*index: int, **vars: Any) β†’ None#

Apply ISWAP gate with parameters on the circuit. See tensorcircuit.gates.iswap_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

matrix() β†’ Any[source]#

Get the unitary matrix for the circuit irrespective with the circuit input state.

Returns

The circuit unitary matrix

Return type

Tensor

measure(*index: int, with_prob: bool = False, status: Optional[Any] = None) β†’ Tuple[Any, Any]#

Take measurement to the given quantum lines. This method is jittable is and about 100 times faster than unjit version!

Parameters
  • index (int) – Measure on which quantum line.

  • with_prob (bool, optional) – If true, theoretical probability is also returned.

  • status (Optional[Tensor]) – external randomness, with shape [index], defaults to None

Returns

The sample output and probability (optional) of the quantum line.

Return type

Tuple[Tensor, Tensor]

measure_instruction(*index: int) β†’ None#

add a measurement instruction flag, no effect on numerical simulation

Parameters

index (int) – the corresponding qubits

measure_jit(*index: int, with_prob: bool = False, status: Optional[Any] = None) β†’ Tuple[Any, Any]#

Take measurement to the given quantum lines. This method is jittable is and about 100 times faster than unjit version!

Parameters
  • index (int) – Measure on which quantum line.

  • with_prob (bool, optional) – If true, theoretical probability is also returned.

  • status (Optional[Tensor]) – external randomness, with shape [index], defaults to None

Returns

The sample output and probability (optional) of the quantum line.

Return type

Tuple[Tensor, Tensor]

measure_reference(*index: int, with_prob: bool = False) β†’ Tuple[str, float][source]#

Take measurement on the given quantum lines by index.

Example

>>> c = tc.Circuit(3)
>>> c.H(0)
>>> c.h(1)
>>> c.toffoli(0, 1, 2)
>>> c.measure(2)
('1', -1.0)
>>> # Another possible output: ('0', -1.0)
>>> c.measure(2, with_prob=True)
('1', (0.25000011920928955+0j))
>>> # Another possible output: ('0', (0.7499998807907104+0j))
Parameters
  • index – Measure on which quantum line.

  • with_prob – If true, theoretical probability is also returned.

Returns

The sample output and probability (optional) of the quantum line.

Return type

Tuple[str, float]

mid_measure(index: int, keep: int = 0) β†’ Any#

Middle measurement in z-basis on the circuit, note the wavefunction output is not normalized with mid_measurement involved, one should normalize the state manually if needed. This is a post-selection method as keep is provided as a prior.

Parameters
  • index (int) – The index of qubit that the Z direction postselection applied on.

  • keep (int, optional) – 0 for spin up, 1 for spin down, defaults to be 0.

mid_measurement(index: int, keep: int = 0) β†’ Any[source]#

Middle measurement in z-basis on the circuit, note the wavefunction output is not normalized with mid_measurement involved, one should normalize the state manually if needed. This is a post-selection method as keep is provided as a prior.

Parameters
  • index (int) – The index of qubit that the Z direction postselection applied on.

  • keep (int, optional) – 0 for spin up, 1 for spin down, defaults to be 0.

mpo(*index: int, **vars: Any) β†’ None#

Apply mpo gate in MPO format on the circuit. See tensorcircuit.gates.mpo_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

mpogates = ['multicontrol', 'mpo']#
multicontrol(*index: int, **vars: Any) β†’ None#

Apply multicontrol gate in MPO format on the circuit. See tensorcircuit.gates.multicontrol_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

orx(*index: int, **vars: Any) β†’ None#

Apply ORX gate with parameters on the circuit. See tensorcircuit.gates.orx_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

ory(*index: int, **vars: Any) β†’ None#

Apply ORY gate with parameters on the circuit. See tensorcircuit.gates.ory_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

orz(*index: int, **vars: Any) β†’ None#

Apply ORZ gate with parameters on the circuit. See tensorcircuit.gates.orz_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

ox(*index: int, **kws: Any) β†’ None#

Apply OX gate on the circuit. See tensorcircuit.gates.ox_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j \end{bmatrix}\end{split}\]

oy(*index: int, **kws: Any) β†’ None#

Apply OY gate on the circuit. See tensorcircuit.gates.oy_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 0.+0.j & 0.-1.j & 0.+0.j & 0.+0.j\\ 0.+1.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j \end{bmatrix}\end{split}\]

oz(*index: int, **kws: Any) β†’ None#

Apply OZ gate on the circuit. See tensorcircuit.gates.oz_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & -1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j \end{bmatrix}\end{split}\]

perfect_sampling(status: Optional[Any] = None) β†’ Tuple[str, float]#

Sampling bistrings from the circuit output based on quantum amplitudes. Reference: arXiv:1201.3974.

Parameters

status (Optional[Tensor]) – external randomness, with shape [nqubits], defaults to None

Returns

Sampled bit string and the corresponding theoretical probability.

Return type

Tuple[str, float]

phase(*index: int, **vars: Any) β†’ None#

Apply PHASE gate with parameters on the circuit. See tensorcircuit.gates.phase_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

phasedamping(*index: int, status: Optional[float] = None, name: Optional[str] = None, **vars: float) β†’ None#

Apply phasedamping quantum channel on the circuit. See tensorcircuit.channels.phasedampingchannel()

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • status (Tensor) – uniform external random number between 0 and 1

  • vars (float.) – Parameters for the channel.

post_select(index: int, keep: int = 0) β†’ Any#

Middle measurement in z-basis on the circuit, note the wavefunction output is not normalized with mid_measurement involved, one should normalize the state manually if needed. This is a post-selection method as keep is provided as a prior.

Parameters
  • index (int) – The index of qubit that the Z direction postselection applied on.

  • keep (int, optional) – 0 for spin up, 1 for spin down, defaults to be 0.

post_selection(index: int, keep: int = 0) β†’ Any#

Middle measurement in z-basis on the circuit, note the wavefunction output is not normalized with mid_measurement involved, one should normalize the state manually if needed. This is a post-selection method as keep is provided as a prior.

Parameters
  • index (int) – The index of qubit that the Z direction postselection applied on.

  • keep (int, optional) – 0 for spin up, 1 for spin down, defaults to be 0.

prepend(c: tensorcircuit.abstractcircuit.AbstractCircuit) β†’ tensorcircuit.abstractcircuit.AbstractCircuit#

prepend circuit c before

Parameters

c (BaseCircuit) – The other circuit to be prepended

Returns

The composed circuit

Return type

BaseCircuit

probability() β†’ Any#

get the 2^n length probability vector over computational basis

Returns

probability vector

Return type

Tensor

quoperator() β†’ tensorcircuit.quantum.QuOperator#

Get the QuOperator MPO like representation of the circuit unitary without contraction.

Returns

QuOperator object for the circuit unitary (open indices for the input state)

Return type

QuOperator

quvector() β†’ tensorcircuit.quantum.QuVector#

Get the representation of the output state in the form of QuVector while maintaining the circuit uncomputed

Returns

QuVector representation of the output state from the circuit

Return type

QuVector

r(*index: int, **vars: Any) β†’ None#

Apply R gate with parameters on the circuit. See tensorcircuit.gates.r_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

readouterror_bs(readout_error: Optional[Sequence[Any]] = None, p: Optional[Any] = None) β†’ Any#

Apply readout error to original probabilities of bit string and return the noisy probabilities.

Example

>>> readout_error = []
>>> readout_error.append([0.9,0.75])  # readout error for qubit 0, [p0|0,p1|1]
>>> readout_error.append([0.4,0.7])   # readout error for qubit 1, [p0|0,p1|1]
Parameters
  • readout_error (Optional[Sequence[Any]] Tensor, List, Tuple) – list of readout error for each qubits.

  • p (Optional[Any]) – probabilities of bit string

Return type

Tensor

replace_inputs(inputs: Any) β†’ None#

Replace the input state with the circuit structure unchanged.

Parameters

inputs (Tensor) – Input wavefunction.

replace_mps_inputs(mps_inputs: tensorcircuit.quantum.QuOperator) β†’ None[source]#

Replace the input state in MPS representation while keep the circuit structure unchanged.

Example

>>> c = tc.Circuit(2)
>>> c.X(0)
>>>
>>> c2 = tc.Circuit(2, mps_inputs=c.quvector())
>>> c2.X(0)
>>> c2.wavefunction()
array([1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], dtype=complex64)
>>>
>>> c3 = tc.Circuit(2)
>>> c3.X(0)
>>> c3.replace_mps_inputs(c.quvector())
>>> c3.wavefunction()
array([1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], dtype=complex64)
Parameters

mps_inputs (Tuple[Sequence[Gate], Sequence[Edge]]) – (Nodes, dangling Edges) for a MPS like initial wavefunction.

reset(*index: int, status: Optional[float] = None, name: Optional[str] = None, **vars: float) β†’ None#

Apply reset quantum channel on the circuit. See tensorcircuit.channels.resetchannel()

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • status (Tensor) – uniform external random number between 0 and 1

  • vars (float.) – Parameters for the channel.

reset_instruction(*index: int) β†’ None#

add a reset instruction flag, no effect on numerical simulation

Parameters

index (int) – the corresponding qubits

rx(*index: int, **vars: Any) β†’ None#

Apply RX gate with parameters on the circuit. See tensorcircuit.gates.rx_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

rxx(*index: int, **vars: Any) β†’ None#

Apply RXX gate with parameters on the circuit. See tensorcircuit.gates.rxx_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

ry(*index: int, **vars: Any) β†’ None#

Apply RY gate with parameters on the circuit. See tensorcircuit.gates.ry_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

ryy(*index: int, **vars: Any) β†’ None#

Apply RYY gate with parameters on the circuit. See tensorcircuit.gates.ryy_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

rz(*index: int, **vars: Any) β†’ None#

Apply RZ gate with parameters on the circuit. See tensorcircuit.gates.rz_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

rzz(*index: int, **vars: Any) β†’ None#

Apply RZZ gate with parameters on the circuit. See tensorcircuit.gates.rzz_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

s(*index: int, **kws: Any) β†’ None#

Apply S gate on the circuit. See tensorcircuit.gates.s_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j\\ 0.+0.j & 0.+1.j \end{bmatrix}\end{split}\]

sample(batch: Optional[int] = None, allow_state: bool = False, readout_error: Optional[Sequence[Any]] = None, format: Optional[str] = None, random_generator: Optional[Any] = None, status: Optional[Any] = None) β†’ Any#

batched sampling from state or circuit tensor network directly

Parameters
  • batch (Optional[int], optional) – number of samples, defaults to None

  • allow_state (bool, optional) – if true, we sample from the final state if memory allows, True is preferred, defaults to False

  • readout_error (Optional[Sequence[Any]] Tensor, List, Tuple) – readout_error, defaults to None

  • format (Optional[str]) – sample format, defaults to None as backward compatibility check the doc in tensorcircuit.quantum.measurement_results()

  • format – alias for the argument format

  • random_generator (Optional[Any], optional) – random generator, defaults to None

  • status (Optional[Tensor]) – external randomness given by tensor uniformly from [0, 1], if set, can overwrite random_generator

Returns

List (if batch) of tuple (binary configuration tensor and corresponding probability) if the format is None, and consistent with format when given

Return type

Any

sample_expectation_ps(x: Optional[Sequence[int]] = None, y: Optional[Sequence[int]] = None, z: Optional[Sequence[int]] = None, shots: Optional[int] = None, random_generator: Optional[Any] = None, status: Optional[Any] = None, readout_error: Optional[Sequence[Any]] = None, noise_conf: Optional[Any] = None, nmc: int = 1000, statusc: Optional[Any] = None, **kws: Any) β†’ Any#

Compute the expectation with given Pauli string with measurement shots numbers

Example

>>> c = tc.Circuit(2)
>>> c.H(0)
>>> c.rx(1, theta=np.pi/2)
>>> c.sample_expectation_ps(x=[0], y=[1])
-0.99999976
>>> readout_error = []
>>> readout_error.append([0.9,0.75])
>>> readout_error.append([0.4,0.7])
>>> c.sample_expectation_ps(x=[0], y=[1],readout_error = readout_error)
>>> c = tc.Circuit(2)
>>> c.cnot(0, 1)
>>> c.rx(0, theta=0.4)
>>> c.rx(1, theta=0.8)
>>> c.h(0)
>>> c.h(1)
>>> error1 = tc.channels.generaldepolarizingchannel(0.1, 1)
>>> error2 = tc.channels.generaldepolarizingchannel(0.06, 2)
>>> readout_error = [[0.9, 0.75],[0.4, 0.7]]
>>> noise_conf = NoiseConf()
>>> noise_conf.add_noise("rx", error1)
>>> noise_conf.add_noise("cnot", [error2], [[0, 1]])
>>> noise_conf.add_noise("readout", readout_error)
>>> c.sample_expectation_ps(x=[0], noise_conf=noise_conf, nmc=10000)
0.44766843
Parameters
  • x (Optional[Sequence[int]], optional) – index for Pauli X, defaults to None

  • y (Optional[Sequence[int]], optional) – index for Pauli Y, defaults to None

  • z (Optional[Sequence[int]], optional) – index for Pauli Z, defaults to None

  • shots (Optional[int], optional) – number of measurement shots, defaults to None, indicating analytical result

  • random_generator (Optional[Any]) – random_generator, defaults to None

  • status (Optional[Tensor]) – external randomness given by tensor uniformly from [0, 1], if set, can overwrite random_generator

  • readout_error (Optional[Sequence[Any]] Tensor, List, Tuple) – readout_error, defaults to None. Overrided if noise_conf is provided.

  • noise_conf (Optional[NoiseConf], optional) – Noise Configuration, defaults to None

  • nmc (int, optional) – repetition time for Monte Carlo sampling for noisfy calculation, defaults to 1000

  • statusc (Optional[Tensor], optional) – external randomness given by tensor uniformly from [0, 1], defaults to None, used for noisfy circuit sampling

Returns

[description]

Return type

Tensor

sd(*index: int, **kws: Any) β†’ None#

Apply SD gate on the circuit. See tensorcircuit.gates.sd_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j\\ 0.+0.j & 0.-1.j \end{bmatrix}\end{split}\]

sdg(*index: int, **kws: Any) β†’ None#

Apply SD gate on the circuit. See tensorcircuit.gates.sd_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j\\ 0.+0.j & 0.-1.j \end{bmatrix}\end{split}\]

select_gate(which: Any, kraus: Sequence[tensorcircuit.gates.Gate], *index: int) β†’ None#

Apply which-th gate from kraus list, i.e. apply kraus[which]

Parameters
  • which (Tensor) – Tensor of shape [] and dtype int

  • kraus (Sequence[Gate]) – A list of gate in the form of tc.gate or Tensor

  • index (int) – the qubit lines the gate applied on

sexpps(x: Optional[Sequence[int]] = None, y: Optional[Sequence[int]] = None, z: Optional[Sequence[int]] = None, shots: Optional[int] = None, random_generator: Optional[Any] = None, status: Optional[Any] = None, readout_error: Optional[Sequence[Any]] = None, noise_conf: Optional[Any] = None, nmc: int = 1000, statusc: Optional[Any] = None, **kws: Any) β†’ Any#

Compute the expectation with given Pauli string with measurement shots numbers

Example

>>> c = tc.Circuit(2)
>>> c.H(0)
>>> c.rx(1, theta=np.pi/2)
>>> c.sample_expectation_ps(x=[0], y=[1])
-0.99999976
>>> readout_error = []
>>> readout_error.append([0.9,0.75])
>>> readout_error.append([0.4,0.7])
>>> c.sample_expectation_ps(x=[0], y=[1],readout_error = readout_error)
>>> c = tc.Circuit(2)
>>> c.cnot(0, 1)
>>> c.rx(0, theta=0.4)
>>> c.rx(1, theta=0.8)
>>> c.h(0)
>>> c.h(1)
>>> error1 = tc.channels.generaldepolarizingchannel(0.1, 1)
>>> error2 = tc.channels.generaldepolarizingchannel(0.06, 2)
>>> readout_error = [[0.9, 0.75],[0.4, 0.7]]
>>> noise_conf = NoiseConf()
>>> noise_conf.add_noise("rx", error1)
>>> noise_conf.add_noise("cnot", [error2], [[0, 1]])
>>> noise_conf.add_noise("readout", readout_error)
>>> c.sample_expectation_ps(x=[0], noise_conf=noise_conf, nmc=10000)
0.44766843
Parameters
  • x (Optional[Sequence[int]], optional) – index for Pauli X, defaults to None

  • y (Optional[Sequence[int]], optional) – index for Pauli Y, defaults to None

  • z (Optional[Sequence[int]], optional) – index for Pauli Z, defaults to None

  • shots (Optional[int], optional) – number of measurement shots, defaults to None, indicating analytical result

  • random_generator (Optional[Any]) – random_generator, defaults to None

  • status (Optional[Tensor]) – external randomness given by tensor uniformly from [0, 1], if set, can overwrite random_generator

  • readout_error (Optional[Sequence[Any]] Tensor, List, Tuple) – readout_error, defaults to None. Overrided if noise_conf is provided.

  • noise_conf (Optional[NoiseConf], optional) – Noise Configuration, defaults to None

  • nmc (int, optional) – repetition time for Monte Carlo sampling for noisfy calculation, defaults to 1000

  • statusc (Optional[Tensor], optional) – external randomness given by tensor uniformly from [0, 1], defaults to None, used for noisfy circuit sampling

Returns

[description]

Return type

Tensor

sgates = ['i', 'x', 'y', 'z', 'h', 't', 's', 'td', 'sd', 'wroot', 'cnot', 'cz', 'swap', 'cy', 'ox', 'oy', 'oz', 'toffoli', 'fredkin']#
split: Optional[Dict[str, Any]]#
static standardize_gate(name: str) β†’ str#

standardize the gate name to tc common gate sets

Parameters

name (str) – non-standard gate name

Returns

the standard gate name

Return type

str

state(form: str = 'default') β†’ <property object at 0x7fe2a376ee50>#

Compute the output wavefunction from the circuit.

Parameters

form (str, optional) – The str indicating the form of the output wavefunction. β€œdefault”: [-1], β€œket”: [-1, 1], β€œbra”: [1, -1]

Returns

Tensor with the corresponding shape.

Return type

Tensor

swap(*index: int, **kws: Any) β†’ None#

Apply SWAP gate on the circuit. See tensorcircuit.gates.swap_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j \end{bmatrix}\end{split}\]

t(*index: int, **kws: Any) β†’ None#

Apply T gate on the circuit. See tensorcircuit.gates.t_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1. & +0.j & 0. & +0.j\\ 0. & +0.j & 0.70710677+0.70710677j \end{bmatrix}\end{split}\]

td(*index: int, **kws: Any) β†’ None#

Apply TD gate on the circuit. See tensorcircuit.gates.td_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1. & +0.j & 0. & +0.j\\ 0. & +0.j & 0.70710677-0.70710677j \end{bmatrix}\end{split}\]

tdg(*index: int, **kws: Any) β†’ None#

Apply TD gate on the circuit. See tensorcircuit.gates.td_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1. & +0.j & 0. & +0.j\\ 0. & +0.j & 0.70710677-0.70710677j \end{bmatrix}\end{split}\]

tex(**kws: Any) β†’ str#

Generate latex string based on quantikz latex package

Returns

Latex string that can be directly compiled via, e.g. latexit

Return type

str

thermalrelaxation(*index: int, status: Optional[float] = None, name: Optional[str] = None, **vars: float) β†’ None#

Apply thermalrelaxation quantum channel on the circuit. See tensorcircuit.channels.thermalrelaxationchannel()

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • status (Tensor) – uniform external random number between 0 and 1

  • vars (float.) – Parameters for the channel.

to_cirq(enable_instruction: bool = False) β†’ Any#

Translate tc.Circuit to a cirq circuit object.

Parameters

enable_instruction (bool, defaults to False) – whether also export measurement and reset instructions

Returns

A cirq circuit of this circuit.

to_graphviz(graph: Optional[graphviz.graphs.Graph] = None, include_all_names: bool = False, engine: str = 'neato') β†’ graphviz.graphs.Graph#

Not an ideal visualization for quantum circuit, but reserve here as a general approach to show the tensornetwork [Deprecated, use Circuit.vis_tex or Circuit.draw instead]

to_json(file: Optional[str] = None, simplified: bool = False) β†’ Any#

circuit dumps to json

Parameters
  • file (Optional[str], optional) – file str to dump the json to, defaults to None, return the json str

  • simplified (bool) – If False, keep all info for each gate, defaults to be False. If True, suitable for IO since less information is required

Returns

None if dumps to file otherwise the json str

Return type

Any

to_openqasm(**kws: Any) β†’ str#

transform circuit to openqasm via qiskit circuit, see https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.qasm.html for usage on possible options for kws

Returns

circuit representation in openqasm format

Return type

str

to_qir() β†’ List[Dict[str, Any]]#

Return the quantum intermediate representation of the circuit.

Example

>>> c = tc.Circuit(2)
>>> c.CNOT(0, 1)
>>> c.to_qir()
[{'gatef': cnot, 'gate': Gate(
    name: 'cnot',
    tensor:
        array([[[[1.+0.j, 0.+0.j],
                [0.+0.j, 0.+0.j]],

                [[0.+0.j, 1.+0.j],
                [0.+0.j, 0.+0.j]]],


            [[[0.+0.j, 0.+0.j],
                [0.+0.j, 1.+0.j]],

                [[0.+0.j, 0.+0.j],
                [1.+0.j, 0.+0.j]]]], dtype=complex64),
    edges: [
        Edge(Dangling Edge)[0],
        Edge(Dangling Edge)[1],
        Edge('cnot'[2] -> 'qb-1'[0] ),
        Edge('cnot'[3] -> 'qb-2'[0] )
    ]), 'index': (0, 1), 'name': 'cnot', 'split': None, 'mpo': False}]
Returns

The quantum intermediate representation of the circuit.

Return type

List[Dict[str, Any]]

to_qiskit(enable_instruction: bool = False, enable_inputs: bool = False) β†’ Any#

Translate tc.Circuit to a qiskit QuantumCircuit object.

Parameters
  • enable_instruction (bool, defaults to False) – whether also export measurement and reset instructions

  • enable_inputs (bool, defaults to False) – whether also export the inputs

Returns

A qiskit object of this circuit.

toffoli(*index: int, **kws: Any) β†’ None#

Apply TOFFOLI gate on the circuit. See tensorcircuit.gates.toffoli_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j & 0.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j\\ 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 0.+0.j & 1.+0.j & 0.+0.j \end{bmatrix}\end{split}\]

u(*index: int, **vars: Any) β†’ None#

Apply U gate with parameters on the circuit. See tensorcircuit.gates.u_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

unitary(*index: int, **vars: Any) β†’ None#

Apply ANY gate with parameters on the circuit. See tensorcircuit.gates.any_gate().

Parameters
  • index (int.) – Qubit number that the gate applies on.

  • vars (float.) – Parameters for the gate.

unitary_kraus(kraus: Sequence[tensorcircuit.gates.Gate], *index: int, prob: Optional[Sequence[float]] = None, status: Optional[float] = None, name: Optional[str] = None) β†’ Any[source]#

Apply unitary gates in kraus randomly based on corresponding prob. If prob is None, this is reduced to kraus channel language.

Parameters
  • kraus (Sequence[Gate]) – List of tc.gates.Gate or just Tensors

  • prob (Optional[Sequence[float]], optional) – prob list with the same size as kraus, defaults to None

  • status (Optional[float], optional) – random seed between 0 to 1, defaults to None

Returns

shape [] int dtype tensor indicates which kraus gate is actually applied

Return type

Tensor

unitary_kraus2(kraus: Sequence[tensorcircuit.gates.Gate], *index: int, prob: Optional[Sequence[float]] = None, status: Optional[float] = None, name: Optional[str] = None) β†’ Any[source]#
vgates = ['r', 'cr', 'u', 'cu', 'rx', 'ry', 'rz', 'phase', 'rxx', 'ryy', 'rzz', 'cphase', 'crx', 'cry', 'crz', 'orx', 'ory', 'orz', 'iswap', 'any', 'exp', 'exp1']#
vis_tex(**kws: Any) β†’ str#

Generate latex string based on quantikz latex package

Returns

Latex string that can be directly compiled via, e.g. latexit

Return type

str

wavefunction(form: str = 'default') β†’ <property object at 0x7fe2a376ee50>[source]#

Compute the output wavefunction from the circuit.

Parameters

form (str, optional) – The str indicating the form of the output wavefunction. β€œdefault”: [-1], β€œket”: [-1, 1], β€œbra”: [1, -1]

Returns

Tensor with the corresponding shape.

Return type

Tensor

wroot(*index: int, **kws: Any) β†’ None#

Apply WROOT gate on the circuit. See tensorcircuit.gates.wroot_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 0.70710677+0.j & -0.5 & -0.5j\\ 0.5 & -0.5j & 0.70710677+0.j \end{bmatrix}\end{split}\]

x(*index: int, **kws: Any) β†’ None#

Apply X gate on the circuit. See tensorcircuit.gates.x_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 0.+0.j & 1.+0.j\\ 1.+0.j & 0.+0.j \end{bmatrix}\end{split}\]

y(*index: int, **kws: Any) β†’ None#

Apply Y gate on the circuit. See tensorcircuit.gates.y_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 0.+0.j & 0.-1.j\\ 0.+1.j & 0.+0.j \end{bmatrix}\end{split}\]

z(*index: int, **kws: Any) β†’ None#

Apply Z gate on the circuit. See tensorcircuit.gates.z_gate().

Parameters

index (int.) –

Qubit number that the gate applies on. The matrix for the gate is

\[\begin{split}\begin{bmatrix} 1.+0.j & 0.+0.j\\ 0.+0.j & -1.+0.j \end{bmatrix}\end{split}\]

tensorcircuit.circuit.expectation(*ops: Tuple[tensornetwork.network_components.Node, List[int]], ket: Any, bra: Optional[Any] = None, conj: bool = True, normalization: bool = False) β†’ Any[source]#

Compute \(\langle bra\vert ops \vert ket\rangle\).

Example 1 (\(bra\) is same as \(ket\))

>>> c = tc.Circuit(3)
>>> c.H(0)
>>> c.ry(1, theta=tc.num_to_tensor(0.8 + 0.7j))
>>> c.cnot(1, 2)
>>> state = c.wavefunction() # the state of this circuit
>>> x1z2 = [(tc.gates.x(), [0]), (tc.gates.z(), [1])] # input qubits
>>>
>>> # Expection of this circuit / <state|*x1z2|state>
>>> c.expectation(*x1z2)
array(0.69670665+0.j, dtype=complex64)
>>> tc.expectation(*x1z2, ket=state)
(0.6967066526412964+0j)
>>>
>>> # Normalize(expection of Circuit) / Normalize(<state|*x1z2|state>)
>>> c.expectation(*x1z2) / tc.backend.norm(state) ** 2
(0.5550700389340034+0j)
>>> tc.expectation(*x1z2, ket=state, normalization=True)
(0.55507004+0j)

Example 2 (\(bra\) is different from \(ket\))

>>> c = tc.Circuit(2)
>>> c.X(1)
>>> s1 = c.state()
>>> c2 = tc.Circuit(2)
>>> c2.X(0)
>>> s2 = c2.state()
>>> c3 = tc.Circuit(2)
>>> c3.H(1)
>>> s3 = c3.state()
>>> x1x2 = [(tc.gates.x(), [0]), (tc.gates.x(), [1])]
>>>
>>> tc.expectation(*x1x2, ket=s1, bra=s2)
(1+0j)
>>> tc.expectation(*x1x2, ket=s3, bra=s2)
(0.7071067690849304+0j) # 1/sqrt(2)
Parameters
  • ket (Tensor) – \(ket\). The state in tensor or QuVector format

  • bra (Optional[Tensor], optional) – \(bra\), defaults to None, which is the same as ket.

  • conj (bool, optional) – \(bra\) changes to the adjoint matrix of \(bra\), defaults to True.

  • normalization (bool, optional) – Normalize the \(ket\) and \(bra\), defaults to False.

Raises

ValueError – β€œCannot measure two operators in one index”

Returns

The result of \(\langle bra\vert ops \vert ket\rangle\).

Return type

Tensor